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EXECUTIVE SUMMARY 

Global Food Security-support Analysis Data @ 30 m (GFSAD30) project is funded by NASA 

MEaSUREs (Making Earth System Data Records for Use in Research Environments), through 

ROSES solicitation, for a period of 5 years (June 1, 2013- May 31, 2018). The overarching goal 

of the GFSAD30 project is to produce consistent and unbiased estimates of global agricultural 

cropland areas, crop types, crop watering method, and cropping intensities using mature cropland 

mapping algorithms (CMAs) at nominal 30 m spatial resolution. During the process, GFSAD30 

project will also develop and release 1 km and 250 m cropland products. This report provides an 

overview of the progress made till date, specifically for the period of June 1, 2014 to November 

23, 2014.  

 

Current achievements include provisional release of GFSAD30 products @ nominal 1km 

through the Land Processes Distributed Active Archive Center (LP DAAC): 

Global Cropland Extent (GCE) 1km Crop Dominance (aka GCE V0.0) [see section 2.1.1] 

https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V0  

Global Cropland Extent (GCE) 1km Multi-study Crop Mask (aka GCE V1.0) [see section 2.1.2] 

https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V1  

 

Currently, cropland mapping algorithms (CMAs) are developed and tested to produce cropland 

products (cropland extent\areas, irrigation versus rainfed, cropping intensity, and crop type) 

using MODIS 250m time-series data, Landsat 30 m time-series data, numerous secondary data, 

ground data, and very high spatial resolution imagery (sub-meter to 5 m). Algorithms include 

spectral matching techniques, parallel k-means computing, automated cropland classification 

algorithms, linear discriminant analysis, linear spectral mixture model, and hierarchical 

segmentation (HSEG). Extensive ground data is crowd sourced and organized in croplands.org. 

Also, ~130,000 ground data points are collected and\or sourced. Large number of very high 

spatial resolution imagery (sub-meter to 5 meter; VHRI) are utilized both in algorithm 

development and product validation. Ground data, VHRI, and HSEG derived imagery are all 

used in accuracy assessments.  

 

Project teams are utilizing the computing power of super computers (e.g., NASA NEX), and also 

coding in Java script and Python in the Google Earth Engine (GEE) Playfield to quickly process 

massively large quantities of 250m MODIS to 30 m Landsat and numerous other secondary 

mega-data cubes. Project will organize a 3 day workshop in Reston, VA during January 28-30 to 

discuss and further advance release of project outputs that include four distinct products, product 

documentation, peer-reviewed manuscripts, algorithms, Algorithm Theoretical Basis Documents 

(ATBD's), and presentations. Project outputs are updated constantly through a common 

platform: http://geography.wr.usgs.gov/science/croplands/index.html  

 

http://geography.wr.usgs.gov/science/croplands/
mailto:pthenkabail@usgs.gov
mailto:thenkabail@gmail.com
https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V0
https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V1
http://geography.wr.usgs.gov/science/croplands/index.html
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1.0 Goal and Objectives of GFSAD30 

The overarching goal of GFSAD30 project is to produce consistent and unbiased estimates of 

global agricultural cropland areas, crop types, crop watering method, and cropping intensities 

using mature cropland mapping algorithms (CMAs):   

There are 6 specific objectives for GFSAD30m project (as in the original proposal):  

OBJECTIVE 1: Cropland extent,  

OBJECTIVE 2: Crop types (focus on 8 crops that occupy 70% of global croplands),  

OBJECTIVE 3: Irrigated vs. rainfed croplands,   

OBJECTIVE 4: Cropping intensities\phenology (single, double, triple, continuous cropping),  

OBJECTIVE 5: Cropped area computation; and  

OBJECTIVE 6: In addition, GCAD four decades will produce continuous data streams at 

monthly frequency (e.g., illustration for 1 year in Figure 1) from 1982-2017 at 8 km from 1982 

to 2000 based on AVHRR GIMMS data and at 250 m from 2001 to 2017 based on MODIS data.  

 

Of these the first 4 are the main products (Figure 1) and the next two are the derived products, 

once the first 4 products are established. 

 

This progress report provides the work carried out, and the progress made, in meeting the 

above defined GFSAD30 project goal and objectives to date (June 1, 2013-November 6, 

2014; Date Submitted: November 7, 2014). 

 

Global Food Security-support Analysis Data @ 30 m (GFSAD30) Project is a 5-year (June 1, 

2013- May 31, 2018) NASA MEaSUREs (Making Earth System Data Records for Use in 

Research Environments) funded, U. S. Geological Survey (USGS) lead project.  

 

2.0 Overview of GFSAD30 products 

GFSAD30 project, will release global cropland products (Figure 1) at 3 resolutions: 

 1 km 

 250 m and 

 30 m 

The ultimate goal of the GFSAD30 project is to release global cropland products (Figure 1) at 30 

m. However 250m and 1 km products will also be released in the interim. It is not a must for the 

project to do so. However, interim products at 1 km and 250 m will be invaluable in many ways, 

especially to help create interest with user communities earlier (rather than wait for 30 m 

products to come on 4
th

 or 5
th

 year of the project), create interest with wider user groups, and 

help gather ground data. It is likely that for some areas of the world, we may release 30 m 

product without releasing 250 m product, especially when some sub-groups conduct studies 

directly to produce 30 m products.  

 

The specific cropland products delivered at each resolution are as follows: 

http://geography.wr.usgs.gov/science/croplands/
mailto:pthenkabail@usgs.gov
mailto:thenkabail@gmail.com
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Figure 1. Four main products of global food security-support analysis data @30m (GFSAD30) 

project. These products are: (a) cropland extent, (b) irrigated vs. rainfed, (c) cropping intensity 

(single, double, triple, and continuous crop), and (d) crop type. 

 

2.1  1 km products 

There are two 1 km cropland products, both of which are already made available at: 

http://geography.wr.usgs.gov/science/croplands/  

These two cropland products are described in section 2.1.1 and section 2.1.2 below. 

 

2.1.1  GCE 1km Crop Dominance (aka GCE V0.0) 
This is Global Food Security-support Analysis Data (GFSAD) project’s ‘GCE’ (Global Cropland 

Extent) 1km Crop Dominance product (e.g., Figure 2a and 2b). Cropland products released at 

this resolution will be: 

http://geography.wr.usgs.gov/science/croplands/
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 Cropland extent and areas; 

 Cropland watering method: irrigation versus rainfed 

To a lesser extent 

 Crop dominance (not type) 

One can download these data from: 

http://geography.wr.usgs.gov/science/croplands/  

 

This Global Food Security-support Analysis Data (GFSAD) Project’s Global Cropland Extent 

Product at nominal 1km (GCE 1Km Crop Dominance). The GCE 1KM Crop Dominance 

provides spatial distribution of the five major global cropland types (wheat, rice, corn, barley and 

soybeans; which occupy 60% of all global cropland areas) at nominal 1km (GCE 1KM Crop 

Dominance). The map is produced by overlying the five dominant crops of the world produced 

by Ramankutty et al. (2008), Monfreda et al. (2008), and Portman et al. (2009) over the remote 

sensing derived global irrigated and rainfed cropland area map of the International Water 

Management Institute (IWMI; Thenkabail et al., 2009a, 2009b, 2011). 

GCE 1KM Crop Dominance (see Figure below) is an 8 class digital product that provides, at 

nominal 1 km, information on global:  

1. Cropland extent\areas,  

2. irrigated versus rainfed cropping,  

3. Crop dominance, and  

4. Cropping intensity (single, double, triple, and continuous crops). 

 

 
Figure 2a. Spatial distribution of the 5 major global cropland types (wheat, rice, maize, barley 

and soybeans). The map is produced by overlying the 5 dominant crops (wheat, rice, maize, 

barley and soybeans; which occupy 60% of all global cropland areas) of the world produced by 

Ramankutty et al. (2008), Monfreda et al. (2008), and Portman et al. (2009) over the remote 

sensing derived global irrigated and rainfed cropland area map of the International Water 

Management Institute (IWMI; Thenkabail et al., 2009a, 2009b, 2011). 

 

http://geography.wr.usgs.gov/science/croplands/
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Figure 2b. GCE 1km Crop Dominance (aka GCE V0.0). Figure here shows the USA part of 

the product. Classes 1 to 3 are croplands that are irrigated. Classes 4 to 7 are croplands that are 

rainfed. Class 8 is overwhelmingly non-croplands, but have very small fractions of croplands 

(refer to Thenkabail et al., 2012). Each class has some combination of croplands dominating in 

them. 

 

2.1.1.1 Product and ATBT References GCE 1km Crop Dominance (aka GCE V0.0): 

The GCE 1km Crop Dominance (aka GCE V0.0) is precursor to much more refined 250m and 

30 m products. A number of publications pertaining to GCE 1km Crop Dominance (aka GCE 

V0.0) are given below, in order of importance for the product: 

 
Thenkabail P.S., Knox J.W., Ozdogan, M., Gumma, M.K., Congalton, R.G., Wu, Z., Milesi, C., Finkral, A., Marshall, M., Mariotto, I., You, S. 

Giri, C. and Nagler, P. 2012.  Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing 

help?. Photogrammetric Engineering and Remote Sensing, August 2012 Special Issue on Global Croplands: Highlight Article. 78(8): 773-782. 
 

Thenkabail, P.S.,  Hanjra, M.A., Dheeravath, V., Gumma, M. 2011. Book Chapter #  16:  Global Croplands and Their Water Use Remote Sensing 

and Non-Remote Sensing Perspectives. In the Book entitled: “Advances in Environmental Remote Sensing: Sensors, Algorithms, and 
Applications”. Taylor and Francis Edited by Dr. Qihao Weng. Pp. 383-419.  

 
Thenkabail. P., Lyon, G.J., Turral, H., and Biradar, C.M. 2009b. Book entitled: “Remote Sensing of Global Croplands for Food Security” (CRC 

Press- Taylor and Francis group, Boca Raton, London, New York.  Pp. 556 (48 pages in color). Published in June, 2009.  

Reviews of this book: 
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http://www.crcpress.com/product/isbn/9781420090093 

http://gfmt.blogspot.com/2011/05/review-remote-sensing-of-global.html 
 

Thenkabail, P.S., GangadharaRao, P., Biggs, T., Krishna, M., and Turral, H., 2007. Spectral Matching Techniques to Determine Historical Land 

use/Land cover (LULC) and Irrigated Areas using Time-series AVHRR Pathfinder Datasets in the Krishna River Basin, India. Photogrammetric 
Engineering and Remote Sensing. 73(9): 1029-1040. (Second Place Recipients of the 2008 John I. Davidson ASPRS President’s Award for 

Practical papers). 

 
Biradar, C.M., Thenkabail. P.S., Noojipady, P., Li, Y.J., Dheeravath, V., Velpuri, M., Turral, H., Cai, X.L., Gumma, M., Gangalakunta, O.R.P., 

Schull, M., Alankara, R.D., Gunasinghe, S., and Xiao, X. 2009. Book Chapter 15: Global map of rainfed cropland areas (GMRCA) and statistics 

using remote sensing. Pp. 357-392. In the book entitled: “Remote Sensing of Global Croplands for Food Security” (CRC Press- Taylor and 
Francis group, Boca Raton, London, New York.  Pp. 475. Published in June, 2009. (Editors: Thenkabail. P., Lyon, G.J., Biradar, C.M., and 

Turral, H.). 

 
Thenkabail P.S., Wu Z. An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and 

Secondary Data. Remote Sensing. 2012; 4(10):2890-2918. 

Download the paper @ this link: http://www.mdpi.com/2072-4292/4/10/2890  
ACCA algorithm at this link: https://powellcenter.usgs.gov/globalcroplandwater/content/models-algorithms   

 

Thenkabail, P.S. 2012. Principal Investigator. USGS Global croplands, their water use & food security Web\Data Portal, 
(https://powellcenter.usgs.gov/globalcroplandwater/)  

 

Thenkabail, P.S., Biradar C.M., Noojipady, P., Dheeravath, V., Li, Y.J., Velpuri, M., Gumma, M., Reddy, G.P.O., Turral, H., Cai, X. L., 
Vithanage, J., Schull, M., and Dutta, R. 2009a. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last 

millennium. International Journal of Remote Sensing. 30(14): 3679-3733. July, 20, 2009. 

 
Thenkabail, P.S. 2012. Special Issue Foreword. Global Croplands special issue for the August 2012 special issue for Photogrammetric 

Engineering and Remote Sensing. PE&RS. 78(8): 787-788.  
 

Thenkabail, P.S. 2012. Guest Editor for Global Croplands Special Issue. Photogrammetric Engineering and Remote Sensing. PE&RS. 78(8).  

 
Wu, Z., Thenkabail, P.S., Zakzeski, A., Mueller, R., Melton, F., Rosevelt, C., Dwyer, J., Johnson, J., Verdin, J. P., 2014. Seasonal cultivated and 

fallow cropland mapping using modis-based automated cropland classification algorithm. J. Appl. Remote Sens. 0001;8(1):083685.  

doi:10.1117/1.JRS.8.083685. 
 

Wu, Z., Thenkabail, P.S., and Verdin, J.  2014. An automated cropland classification algorithm (ACCA) using Landsat and MODIS data 

combination for California. Photogrammetric Engineering and Remote Sensing. Vol. 80(1): 81-90. 
********************************************************************************************************************* 
 

2.1.2  GCE 1km Multi-study Crop Mask (aka GCE V1.0) 
This is Global Food Security-support Analysis Data (GFSAD) project’s ‘GCE’ (Global Cropland 

Extent) 1km Multi-study Crop Mask product (e.g., Figure 3a, 3b). GCE V1.0 product was 

produced by using 4 baseline products:   

 

1.Thenkabail et al. (Thenkabail et al., 2009b, Biradar et al., 2009, Thenkabail et al., 2011) 

 ~1 km global cropland product  

2. Pittman et al. (2010) 

 250 m global cropland product 

3. Yu et al., (2013) 

 30 m global cropland product 

4. Friedl et al (2010) 

 500 m global land use\land cover product 

 

The ‘GCE’ (Global Cropland Extent) 1km Multi-study Crop Mask product will be: 

 Cropland extent and areas; 

 Cropland watering method: irrigation versus rainfed 

One can download these data from: 

http://geography.wr.usgs.gov/science/croplands/ 

 

https://powellcenter.usgs.gov/globalcroplandwater/content/models-algorithms
https://powellcenter.usgs.gov/globalcroplandwater/
http://geography.wr.usgs.gov/science/croplands/
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This Global Food Security-support Analysis Data (GFSAD) Project’s Global Cropland Extent 

Product at nominal 1km (GCE 1Km Crop Dominance). This Global Food Security-support 

Analysis Data (GFSAD) Project’s Global Cropland Extent Product at nominal 1km from multi-

study crop mask (aka GCE V1.0) provides spatial distribution of a disaggregated five class 

global cropland extent map derived at nominal 1-km based on four major studies: Thenkabail et 

al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Classes 1 to 

Class 5 are cropland classes, that are dominated by irrigated and rainfed agriculture. Class 4 to 

and Class 5 have minor/very minor fractions of croplands. 

 

GCE 1KM Multi-study Crop Mask (see Figure 2 below) is a 5 class digital product that provides, 

at nominal 1 km, information on global: 1. cropland extent\areas, 2. irrigated versus rainfed 

cropping. There is no crop type or crop type dominance information. Cropping intensity (single, 

double, triple, and continuous crops) can be obtained for every pixel using time-series remote 

sensing data. 

 

 
 

Figure 3a. A disaggregated twelve class global cropland extent map derived at nominal 1-km 

based on four major studies: Thenkabail et al. (2009a, 2011), Pittman et al. (2010), Yu et al. 

(2013), and Friedl et al. (2010). Class 1 to Class 9 are cropland classes, that are dominated by 

irrigated and rainfed agriculture. Class 10 to and Class 12 have ONLY minor or very minor 

fractions of croplands. Refer to Teluguntla et al., 2015 for details. 
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Figure 3b. GCE 1km Multi-study Crop Mask (aka GCE V1.0). Figure here shows the global 

product. A disaggregated five class global cropland extent map derived at nominal 1-km based 

on four major studies: Thenkabail et al. (2009a, b, 2011), Pittman et al. (2010), Yu et al. (2013), 

and Friedl et al. (2010). Classes 1 to Class 5 are cropland classes, that are dominated by irrigated 

and rainfed agriculture. However, class 4 and Class 5 have ONLY minor or very minor fractions 

of croplands. Refer to Table 6.7c for cropland statistics of this map. Note: Irrigation major: 

areas irrigated by large reservoirs created by large and medium dams, barrages and even large 

ground water pumping. Irrigation minor: areas irrigated by small reservoirs, irrigation tanks, 

open wells, and other minor irrigation. However, it is very hard to draw a strict boundary 

between major and minor irrigation and in places there can be significant mixing. So, when 

major irrigated areas such as the Ganges basin, California’s central valley, Nile basin etc. are 

clearly distinguishable as major irrigation, in other areas major and minor irrigation may inter-

mix.  Refer to Teluguntla et al., 2015 for details. 

 

2.1.2.1 Product and ATBT References for GCE 1km Multi-study Crop Mask (aka GCE 

V1.0): 

The GCE 1km Crop Dominance (aka GCE V0.0) is precursor to much more refined 250m and 

30 m products. A number of publications pertaining to GCE 1km Crop Dominance (aka GCE 

V0.0) are given below, in order of importance for the product: 
Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.S., and Huang, X.M. 2010. MODIS Collection 5 global land cover: 
Algorithm refinements and characterization of new datasets. REMOTE SENSING OF ENVIRONMENT, 114(1), 168-182. 

 

Pittman K., Hansen M.C., Becker-Reshef I., Potapov P.V., Justice C.O. Estimating Global Cropland Extent with Multi-year MODIS Data. 
Remote Sensing. 2010; 2(7):1844-1863. 

 

http://modis.gsfc.nasa.gov/sci_team/pubs/abstract.php?id=00954
http://modis.gsfc.nasa.gov/sci_team/pubs/abstract.php?id=00954
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Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., Congalton, R., Tilton, J., Sankey, T.R., Massey, R., 

Phalke, A., and Yadav, K. 2015.  Global Cropland Area Database (GCAD) derived from Remote Sensing in Support of Food Security in the 
Twenty-first Century: Current Achievements and Future Possibilities. Land Resources: Monitoring, Modelling, and Mapping. Chapter 6, Vol. II., 

Remote Sensing Handbook. Three Volume Book edited by Prasad S. Thenkabail. Taylor and Francis Inc.\CRC press. Accepted, in Press. 

 
Thenkabail, P.S.,  Hanjra, M.A., Dheeravath, V., Gumma, M. 2011. Book Chapter #  16:  Global Croplands and Their Water Use Remote Sensing 

and Non-Remote Sensing Perspectives. In the Book entitled: “Advances in Environmental Remote Sensing: Sensors, Algorithms, and 

Applications”. Taylor and Francis Edited by Dr. Qihao Weng. Pp. 383-419.  
 

Thenkabail, P.S., Biradar C.M., Noojipady, P., Dheeravath, V., Li, Y.J., Velpuri, M., Gumma, M., Reddy, G.P.O., Turral, H., Cai, X. L., 

Vithanage, J., Schull, M., and Dutta, R. 2009a. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last 
millennium. International Journal of Remote Sensing. 30(14): 3679-3733. July, 20, 2009.  

 

Thenkabail, P. S., Lyon, G. J., Turral, H., & Biradar, C. M. (2009b). Remote Sensing of Global Croplands for Food Security. Boca Raton, 
London, New York: CRC Press- Taylor and Francis Group,  Published in June,. 

 

Portmann, F., S. Siebert, and P. Döll, 2008. MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: a new high-
resolution data set for agricultural and hydrological modelling, Global Biogeochemical Cycles, GB0003435. 

 

Yu, L., Wang, J., Clinton, N., Xin, Q., Zhong, L., Chen, Y., and Gong, P. 2013. International Journal of Digital Earth. FROM-GC: 30 m global 
cropland extent derived through multisource data integration, International Journal of Digital Earth ,DOI:10.1080/17538947.2013.822574. 

2.2.1 250 m product 

2.2.2 GCE 250m Crop Dominance (aka GCE V2.0) 
This is Global Food Security-support Analysis Data (GFSAD) project’s ‘GCE’ (Global Cropland 

Extent) 250km Crop Type and\or Dominance product. Cropland products released at this 

resolution will be: 

 Cropland extent and areas; 

 Cropland watering method: irrigation versus rainfed; 

 Cropping intensity; 

To a lesser extent 

 Crop type and\or dominance 

 

Currently, GCE 250m Crop Dominance (aka GCE V2.0) are produced by various sub-groups, for 

different continents or large areas (see Figure 4) using a wide array of methods and approaches. 

 

2.2.3 GCE 250m Crop Dominance (aka GCE V2.0) for Australia using: (a) spectral 

matching techniques (SMTs), and (b) automated cropland classification methods 

(ACCA) (Pardhasaradhi Teluguntla et al.) 
For Australia, extensive field campaign was conducting in October, 2014. This resulted in 

obtaining ~2500 data points spread across cropland areas of Australia (e.g., Figure 5, 6). These 

precise locations will be made use to gather ideal spectra based on time-series remote sensing 

such as MODIS 250 m NDVI (e.g., Figure 7). Then the spectral matching technique (SMT; 

Thenkabail et al., 2007) will be adopted to determine cropland classes. The SMTs involved 

matching class spectra (e.g., derived from classification) with ideal spectra (e.g., generated based 

on true knowledge of the farms) using time-series remote sensing (Figure 7). The two 

quantitative spectral matching techniques are: 

A. Spectral correlation similarity R-square values (SCS R-square values); 

B. Spectral similarity value (SSV). 

In SCS R-square method, the class spectra are matched with ideal spectra based on magnitude of 

the spectra. In SSV, the class spectra are matched with ideal spectra based on both magnitude 

and shape. The resulting output will provide cropland classes (e.g., Figure 8). The Figure 8 is 

only a preliminary result that requires further development and validation. This will be done 

using the 2014 field data that is currently organized.  

http://geography.wr.usgs.gov/science/croplands/docs/Global-cropland-extent-V10-teluguntla-thenkabail-xiong.pdf
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Table 4. Large study areas for which GCE 250m Crop Dominance (aka GCE V2.0) cropland products are produced by various sub-

groups, for different continents or large areas using a wide array of methods and approaches. 
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Figure 5. Distribution of ~2500 ground data points for Australia collected in October, 2014. These data points are distributed in the 

cropland areas of Australia. 
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Figure 6. Illustration of few Australian ground data points. The signatures shown are derived from modis data for year 2001. 

However, we will develop similar signatures for year 2014 so as to correspond with the 2014 ground data. 
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Figure 7. Qualitative spectral matching technique (SMT). Illustration of matching class spectra (all signatures except thick red 

line) with ideal spectra (thick red lines). 
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Figure 8. Cropland classes of Australia (preliminary) based on spectral matching technique. This is a preliminary product, 

currently in development. 
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2.2.4 GCE 250m Crop Dominance (aka GCE V2.0) for Africa based on parallel k-means 

clustering (Jun Xiong et al.) 
 

Africa cropland products involve parallel computing using k-means clustering. The MODIS 250 

m monthly maximum value composite (MVC) data of 11years (2003-2013) was used to derive 

the GCE 250m Crop Dominance (aka GCE V2.0) for Africa based on parallel k-means 

clustering. The process is illustrated in a nutshell in Figure 9. The algorithm is run on NASA 

NEX supercomputer. The resulting 500 cluster classes (Figure 10) are identified and labeled 

based on extensive ground data and very high resolution (sub-meter to 5 meter) imagery (VHRI) 

as illustrated in Figure 11 and 12. This leads to cropland products (e.g., Figure 13a, 13b). 

However, Figure 13a and 13b are only very preliminary products that require substantially more 

refinement. 

 

The primary challenges for Africa study comes from: 1) Extremely limited local knowledge for 

training; 2) Highly heterogeneous mixture fields; and 3) Complexities of agriculture system and 

land management. In this approach, our efforts include FOUR parts: 1). Building standard 

reference signatures dataset from all-level relevant sources; 2) Stacking and Clustering 253-band 

MODIS 250m NDVI Time-series Dataset; 3) Identification of generic clusters with signatures 

using semi-automatically algorithm; 4) Accuracy Assessment of the product. 

 

In step 1, derived reference samples were established based on the interpretation of VHRI (very 

high resolution images) and temporal profile of MODIS NDVI Data. A web-based system is in 

development to provide a platform to collect / interpret more reference samples in the entire 

scientific community rather than limited experts, to form an updating knowledgebase for flexible 

classifier development. From this method, we’ve create a reference bank including ~6K samples 

all over continental Africa, from field work, thematic agriculture atlas, and research publication, 

and the number of resamples is still increasing. 

 

In step 2, MODIS NDVI Time-series dataset (60GB) in continental Africa was pre-processed. 

The huge 253-bands dataset was clustered into 500 generic clusters based on the characteristics 

of NDVI Time Series, after non-crop area was masked out by GCEV1.0 and MODIS land use 

product (MCD12Q1).  

 

In step 3, all 500 clusters were matched and voted according to the established reference samples 

bank. 47 groups was semi-automatically generated by the matching and voting algorithm and 

then 11 classes were identified in the final nominal 2000 GCEV2.3 @250m product. 

 

It is the first time to utilize comprehensive techniques including remote sensing, parallel 

computing and cloud-deployed GIS service from Google Earth Engine, to a specific field like 

global cropland mapping. And the workflow designed to absorb coming information is still under 

developing. Independent accuracy assessment in Step 4 asks for more reference samples in 

cooperation with other teams like HSeg segmentation and accuracy assessment team. As 

requirement of project we will release the beta version of GCEV2.3 product for Africa on line, 

together with research paper, ATDB documentation and accuracy assessment report on schedule.
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Figure 9. Parallel k-means clustering algorithm running on NASA NEX super computer to determine cropland clusters using 

time-series MODIS 250m NDVI data rendered by Google Earth Engine (GEE). The use of GEE will help us in interactively 

generate crop signatures corresponding to ground data points instantly. Also, it will help us view the very high resolution (sub-

meter to 5 meter) imagery (VHRI) data in background of each class derived using parallel k-means cluster algorithm. 
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Figure 10. Initial 500 cluster classes of Africa @ 250m resolution based on parallel k-means algorithm running on NASA NEX 

supercomputer. The clusters are obtained by computing on MODIS 250m monthly maximum value composite (MVC) NDVI 

data for 11 years (2003-2013). 
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Figure 11. Process of class identification. Involves the use of ground data, very high resolution (sub-meter to 5 meter) imagery 

(VHRI), and time-series MODIS 250 m NDVI signatures of each cluster. 
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Figure 12. Typical ground data used for Africa. This data is now built into croplands.org. 
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Figure 13a. Preliminary disaggregated cropland product of Africa using MODIS time-series 250 m spatial resolution data. This 

product is expected to significantly change with further analysis.  
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Figure 13b. Preliminary aggregated cropland product of Africa using MODIS time-series 250 m spatial resolution data. This 

product is expected to significantly change with further analysis.  
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2.2.5 GFSAD30 30 meter approach to cropland extent for Africa using Linear Spectral 

Mixture Model (LSMM) (Cristina Milesi et al.) 

 

Characterizing cropland extent over Africa at 30m is challenging for two main reasons: 1) 

cropland areas are very fragmented and heterogeneous since few industrial farms exists and 

small farmers tend to grow a variety of crops at a very small scale; 2) the amount of good quality 

data from Landsat is limited because of persistent cloud cover over the tropical portion of the 

continent, the lack of recent Landsat 5 TM data and the data quality degradation of Landsat 7 

data caused by SLC-off. 

 

In this approach to 30m identification of cropland areas in Africa we exploit existing Landsat 

time series for the 2010 epoch to tease out the seasonal variability of agricultural fields and 

contrast it to the less variable surrounding natural covers. Cycles of fallow, emergence, growth to 

full canopy and harvest are typical of cropped fields and are responsible for the high inter-annual 

variability in the balance between the amounts of vegetation and substrate. Accurate measures of 

fractional cover of vegetation, bright and dark substrates can be obtained from unmixing the 

spectral response of Landsat data. The technique of unmixing satellite data relies on identifying 

spectral end members from pure pixels and then inverting a mixture model (e.g., Figure 14). 

While the identification of end members is often done on an image specific basis, here we use a 

set of global Landsat spectral end members so that a standardized spectral mixture model can be 

applied consistently across Landsat scenes and across time series. The goal is to characterize the 

seasonal variability in vegetation and substrate cover for the continent of Africa (e.g., Figure 14). 

This can be achieved by un-mixing time series of Landsat data for pre-emergence, emergence, 

peak of growing season and post-harvest images.  

 

We test the approach both on time series from the archive database of Landsat data and from the 

early releases of global WELD data available on NEX. We show that the main combinations in 

which substrate and canopy cover over Africa are: 1) high vegetation/soil variability, 2) Fallow: 

high substrate with low variability (vegetation fraction close to zero); 3) Rangeland: low 

vegetation and low substrate fractions, low variability; 4) Forest, wetlands: high vegetation, high 

dark fractions, and low variability. It is expected that the identification of cropland extent from 

30 m will be able to take advantage of the unique spectral signature of soil and substrate seasonal 

variation. 

 

As part of this project we have developed platform independent codes for linear spectral un-

mixing that can be deployed in parallel on the NASA Earth Exchange. 

 

Next steps will include training of the WELD DATA with ground targets identified with the 

HSeg segmentation software and define a decision tree model that can efficiently separate 

cropland areas from surrounding non-cropped pixels. 
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Figure 14. Illustration of inverting a standardized linear Spectral mixture model (LSMM) that 

converts the Landsat reflectance to sub-pixel fractions estimates of Substrate (S), Vegetation (V) 

and Dark (D) materials. 

 

2.2.6GCE 250m Crop Dominance (aka GCE V2.0) for N. America\USA based on 

automated cropland classification algorithm (Richard Massey, Teki Sankey et al.) 
The North American product is first developed taking the United States of America. The method 

involves development of an automated cropland classification algorithm (ACCA) using the 

USDA cropland data layer (CDL) as reference. The process begins by creating a knowledge base 

of US croplands (e.g., Figure 15, Table 1). Through this process, it was determined that the 10 

irrigated and 10 rainfed cropland classes occupy ~95% of all US cropland areas (Figure 15, 

Table 1). So, all our studies will be limited to these. In order to establish maximum separability 

between classes, we determined that analyzing classes taking the FAO’s agroecological zones 

(AEZs) will be most appropriate. Based on this analogy, the 10 irrigated and the 10 rainfed 

classes are segmented for each AEZ (e.g., Figure 16 for AEZ7). MODIS 250 m NDVI time-

series spectral characteristics are determined for each of the classes taking ~10,000 random 

sample locations, in most cases (e.g., Figure 17). Once the knowledge is understood, the process 

of building algorithm will focus on separating maximum number of classes with greatest 

possible accuracies. Currently we are developing such an algorithm for year 2008, which will be 

rigorously tested for accuracies using USDA CDL reference data. The emphasis is then to ensure 

that the algorithm works automatically for independent years.
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Figure 15. Croplands of USA [Source: USDA CDL]. The area statistics of these 20 classes (10 irrigated and 10 rainfed) are shown in 

Table 1. 
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Figure 16. Classes within the FAO agroecological zone 7 (AEZ7) for USA derived from USDA cropland layer for year 2008. 
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Figure 17. Derived MODIS 250 m NDVI time-series signatures for the certain rainfed and irrigated crops of USA for FAO 

AEZ7. The spatial distribution of these crops are shown in Figure 15.
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2.2.7 Linear Discriminate Analysis (LDA) for distinguishing croplands from non-

croplands of Europe (Aparna Phalke, Mutlu Ozdogan et al.) 

Time-series Landsat imagery is used to train a Linear Discriminate Analysis (LDA) algorithm to 

separate croplands from non-croplands in Europe. The process involves organizing time-series 

Landsat images for different zones of Europe ((e.g., Figure 18) and then classifying croplands 

versus non-croplands based on LDA equations into mutually exclusive and exhaustive classes 

based on a set of measurable croplands versus non-croplands features (e.g., mean EVI, standard 

deviation of EVI, maximum EVI, Minimum EVI, and so on; e.g., Figure 19) derived from time-

series Landsat images. They are planning to do this at 3 distinct levels: 

1. Footprint/scene level: The LDA model is derived based on randomly generated training 

data of croplands vs. non-croplands of a footprint/scene (e.g., a single Landsat scene or 

few scenes in a homogeneous area) and applied to the same footprint\scene or, at the 

most, to nearby footprints\scenes to classify and separate croplands from non-croplands;  

2. Zonal level: The LDA model is derived based on randomly generated training data of the 

croplands vs. non-croplands of a zone (e.g., a agroecological zone) and applied to all 

scenes within the zone to classify and separate croplands from non-croplands; 

3. Regional level: The LDA model is derived based on randomly generated training data of 

croplands vs. non-croplands of a whole region (e.g., entire Europe) and applied to entire 

region to classify and separate croplands from non-croplands.
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Figure 18. Process of developing linear discriminant analysis (LDA) algorithm using time-series Landsat data for Europe. 
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Figure 19. A typical linear discriminant analysis (LDA) equation used to separate croplands from non-croplands. 
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3.0 Landsat 30 m cropland products (Jun Xiong, Pardhasaradhi Teluguntla, et al.) 

Ultimately, the 30 m products will be produced by various sub-groups based on study areas 

(Figure 20) where different co-Is have expertise and\or interest. Even though there are ~9500 

Landsat images covering the terrestrial area, ~50% of these images (see Table 2) are required to 

cover areas where cropland currently exist and where they can potentially exist in future or 

where they existed in the past. These images were processed, standardized (Table 3,4) and 

mosaicked (Figure 21a through 21g).  

 

 
Figure 20. Shows the 7 regions and the Landsat tiles over these regions over cropland areas 

and\or potential cropland areas. Overall, there are 4990 Landsat tiles over croplands\potential 

croplands (above figure) of ~9000 Landsat tiles (see Table 1) covering the entire terrestrial Earth. 

The areas where there is currently zero croplands and\or their chances of occurring in future are 

about zero (e.g., Sahara desert, Antarctica), no Landsat images are selected to avoid processing 

unnecessary images for cropland studies. 

 

Global Landsat BDI for 4 epochs (1975, 1990, 2000, 2005, and 2010) is summarized in Table 1. 

The Table 1 shows the number of images, sensor from which they are acquired, and the total 

storage volume required these images will be used in GFSAD30 project. The GLS scenes are 

band separate, in UTM coordinates, WGS-84 datum, are distributed in GeoTIFF format, and are 

compressed using tar and gzip / bZip.  Collectively, these datasets provide consistent 

observations of global, orthorectified, leaf-on, “cloud free” data (Gutman, et al., 2008). 
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Epoch Scenes Size* ETM+ TM MSS ALI 

2010 8453 1.5TB 3719 4734 n/a n/a 

2005 9375 1.64TB 7087 2288 n/a n/a 

2000 8755 2.18TB 8755 n/a n/a n/a 

1990 7371 975GB n/a 7371 n/a none 

1975 7592 250GB n/a n/a 7592 n/a 

Table 2. Global coverage of the Landsat GLS Data for epoch 2010, 2005, 2000, 1990, 1975. The 

table shows the sensor from which the data are acquired and the required storage volume. 

 

 

 
Table 3. Distribution of Landsat 2000 images in each of the 7 regions in cropland areas. 

 
 

Table 4. Landsat data normalization and scaling. 
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Figure 21a. Landsat Global Land Survey 2000 (GLS2000) mosaic of Asia. A total of 1651 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer. 
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Figure 21b. Landsat Global Land Survey 2000 (GLS2000) mosaic of Africa. A total of 891 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer. 
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Figure 21c. Landsat Global Land Survey 2000 (GLS2000) mosaic of S. America. A total of 809 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer. 
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Figure 21d. Landsat Global Land Survey 2000 (GLS2000) mosaic of N. America. A total of 900 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer. 
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Figure 21e. Landsat Global Land Survey 2000 (GLS2000) mosaic of Europe. A total of 640 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer. 
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Figure 21f. Landsat Global Land Survey 2000 (GLS2000) mosaic of Australia. A total of 224 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer. 
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Figure 21g. Landsat Global Land Survey 2000 (GLS2000) mosaic of Middle East. A total of 193 images of croplands or where even a 

fraction of croplands exist have been mosaicked. Depicted here as False color composite (FCC) RGB bands 4,3,5. These data are in 

top of the atmosphere reflectance (TOA) expressed in %. The black areas show areas where zero croplands exist and considered sheer 

waste of time and resources to analyze for cropland characteristics. Data is processed and mosaicked on NASA AMES NEX 

supercomputer.
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4.0 Global ground data (Mutlu Ozdogan, Justin Poehnelt, Jun Xiong,  Pardhasaradhi 

Teluguntla et al.) 

Currently ~130,000 ground data points (Figure 22) have been collected and\or sources and 

organized into a database. During the project period, we are collecting ground data from various 

locations of the world (e.g., Figure 23a to 23d). These data will be shared during the project 

period through croplands.org and other mechanisms. 

 
Figure 22. Global ground data base built by University of Wisconsin team. Over 125,000+ data 

points are available. This is ongoing work and the point so far organized is shown above. Each 

point has location, digital images\s, and cropland and other land use characteristics. Most of 

these data is collected by Dr. Murali Krishna Gumma and Prasad Thenkabail’s earlier team at the 

International Water Management Institute. 
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Figure 23a. Typical recent ground data collected in Australia. 
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Figure 23b. Typical recent ground data collected in Africa and Asia. 
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Figure 23c. Typical recent ground data collected in Africa and Asia. 
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Figure 23d. Typical recent ground data collected in Africa and Asia. 

 

5.0 Accuracy, Uncertainty, and Reference Data issues @ University of New Hampshire 

(Russell G. Congalton and Kamini Yadav et al.) 

The team at the University of New Hampshire has specific tasks as part of this GFSAD30 project 

to work on the aspects of spatial uncertainty, accuracy assessment, and reference data collection 

protocols for mapping global croplands.  To that end, in the last year, the team has accomplished 

the following: 

1- Conducted a detailed review of previous global land cover and cropland mapping 

projects.  As part of this effort a review paper was written centered around compiling 

information about past global land cover mapping projects and an uncertainty analysis to show 

where most errors occur in these projects.  This paper is has been submitted to the journal 

Remote Sensing and is currently being revised based on reviewer comments.  The current 

version of the paper is attached.. 

2- Developed a field reference data collection procedure document for the entire team.  This 

document includes a detailed field form.  The procedure was presented to the entire team and 

vetted during our January Team Meeting in Menlo Park, CA and used to facilitate reference data 

collection in Australia.  A full copy of the current version of this document is attached. 

3- Enhanced the computer program written the previous year in R (e.g., Figure 24), an open 

source statistics package, to compute an error matrix and the associated descriptive statistics.  

Since R is open source, this program can be distributed freely to whomever on the team or 

elsewhere that might wish to use it.  A user’s guide to go along with the program was also 

written and is currently in review (attached).  A slide showing the program output is attached.  
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4- Ms. Kamini Yadav spent 2 weeks (July 20 – August 2, 2014) at USGS Flagstaff, AZ 

working with PI Dr. Prasad Thenkabail and his team on field sampling and protocols for 

reference data collection.  In addition, she interacted with the team on the mapping components 

of this project to further understand their needs for accuracy methodology. 

5- Work continued to obtain high-resolution imagery from NGA without much success.  

However, team member Dr. James Tilton (NASA) was able to set up a process by which he 

could request imagery for the entire team.  In addition, Dr. Chandra Giri (team member from 

USGS EROS) provided 500 high spatial resolution images from around the globe that were used 

for another project, but that show great promise for use in this project. 

6- Given this new access to high resolution imagery, we began some analysis of this 

imagery using the HSeg Program written by team member, Dr. James Tilton (e.g., Figure 25).  

This program provides segmentation and classification of high resolution imagery that may 

prove useful as reference data.  This work is ongoing and Ms. Yadav will spend a week in 

December at NASA Goddard working with Dr. Tilton on this analysis.  A slide of our current 

analysis is provided. 

 

 
 
 

Figure 24. Error matrix in R software. 
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Figure 25. Reference data generated through HSeG and eCognition software using very high 

spatial resolution imagery (VHRI). 
 

6.0 Hierarchical Segmentation (HSeg) algorithm for cropland products: work @ NASA 

GSFC (James Tilton et al.) 

 

We have previously developed a best merge region-growing approach that integrates 

nonadjacent region object aggregation with the neighboring region merge process usually 

employed in region growing segmentation approaches (e.g., Figure 26). This approach has been 

named HSeg, because it provides a hierarchical set of image segmentation results. Up to this 

point, HSeg considered only global region feature information in the region growing decision 

process. We present here three new versions of HSeg that include local edge information into the 

region growing decision process at different levels of rigor. We then compare the effectiveness 

and processing times of these new versions HSeg with each other and with the original version of 

HSeg. Figure 26 shows the subset of the image data (Figure 26a) along with the subset of the 

edge image (Figure 26b) produced by the Frei-Chen edge operator (maximum of the four 

spectral bands). Figure 26 shows a 512 by 512 pixel subset of this image to more clearly 

illustrate the results. 
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 (a) (b) 

Figure 26. (a) Bands 3, 2, 1 of a 512x512 pixel subset of a Quickbird image over South Africa 

displayed as RGB. (b) A 512x512 pixel subset of the Frei-Chen edge operator for this image, 

maximum over spectral bands. 

 

Currently, we have proposed three alternate approaches for incorporating the edge information 

into HSeg image segmentation approach (Figure 27, 28). Some quantitative results from a 

plurality vote classification approach provide mixed results concerning the effectiveness of the 

new implementations as compared to the previous version of HSeg. However, we have noted that 

large homogeneous areas are merged into one region much earlier in the region growing process 

with the new versions, as was desired (e.g., Figure 29). We will continue to evaluate and 

compare these versions of HSeg on other data sets, noting the tradeoffs between computation 

time and segmentation quality. 

 
 

Figure 27. HSeg illustrating alternate approaches for incorporating the edge information into 

HSeg image segmentation approach. 
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Figure 28. HSeg illustrating alternate approaches for incorporating the edge information into 

HSeg image segmentation approach. 

 

  
 

Figure 29. Large homogeneous areas are merged into one region much earlier in the region 

growing process with the new versions of Hseg, as was desired. 
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7.0 Google Earth Engine (GEE) Computing  (Justin Poehnelt, Jun Xiong et al.) 

One of the goals of this project is to use the power of Google Earth Engine (GEE) to power and 

process massively large data volumes. GEE houses all the Landsat and MODIS archives, and can 

be used to perform parallel processing by scripting in GEE playfield using Java Script and 

Python. Currently, we have on GEE, the following GFSAD30 data: 

 

Global Cropland Extent (GCE) 1km Crop Dominance (aka GCE V0.0) [see section 2.1.1] 

https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V0 

Global Cropland Extent (GCE) 1km Multi-study Crop Mask (aka GCE V1.0) [see section 2.1.2] 

https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V1  

 

The GEE will allow to interactively zoom in to any are of the world, instantly process and 

classify data based on java script and python coding in play field, and save data. 

 

8.0 Crowdsourcing global ground data through Croplands.org (Justin Poehnelt et al.) 

The main objectives of crowdsourcing global ground data through Croplands.org are: 

A. Create an online ground data mechanism that is live, interactive, and analytical; 

B. mechanism for others to contribute their own knowledge on a location to the project; 

C. Allows our team to review and modify ground data using high resolution satellite 

imagery, NDVI time series and other data sources as available. 

Visit croplands.org site at: 

http://www.croplands.org/  

 

9.0 LP DAAC (Pardhasaradhi Teluguntla et al.) 

All GFSAD30 data will be disseminated through the Land Processes Distributed Active Archive 

Center (LP DAAC), A NASA Earth Observing System Data and Information System (EOSDIS). 

Currently, we have provisional distribution of global cropland products: 

 

Global Cropland Extent (GCE) 1km Crop Dominance (aka GCE V0.0) [see section 2.1.1] 

http://e4ftl01.cr.usgs.gov/GFSAD/GFSADCD1KM/  

Global Cropland Extent (GCE) 1km Multi-study Crop Mask (aka GCE V1.0) [see section 2.1.2] 

http://e4ftl01.cr.usgs.gov/GFSAD/GFSADCM1KM/  

 

10.0 GFSAD30 web portal (Justin Poehnelt et al.) 

The global food security-support analysis data @ 30 m (GFSAD30) project web site provides 

every information on the project that includes project goal and objectives, project progress, link 

to appropriate product releases and all other necessary information. This information can be 

obtained through the links, here: 

http://geography.wr.usgs.gov/science/croplands/  

http://geography.wr.usgs.gov/science/climateLCC.html  

 

11.0 Computing Resources allocation on the NASA Earth Exchange (NEX)  

We upgraded the space allocated to the GFSAD30 project on the NASA Earth Exchange 

(https://nex.nasa.gov ) from 25TB to 50TB. This additional space was required to allow 

prototyping parallelized classifiers that can take advantage of parallel computing capabilities of 

Pleiades Supercomputer and, at the same time, explore the use of dense time stacks of Landsat 

https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V0
https://earthengine.google.org/#detail/USGS%2FGFSAD1000_V1
http://www.croplands.org/
http://e4ftl01.cr.usgs.gov/GFSAD/GFSADCD1KM/
http://e4ftl01.cr.usgs.gov/GFSAD/GFSADCM1KM/
http://geography.wr.usgs.gov/science/croplands/
http://geography.wr.usgs.gov/science/climateLCC.html
https://nex.nasa.gov/
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data, both from the Landsat archive and from WELD CONUS data. We also started 

experimenting with the processing of large Landsat composites with Endeavor, the latest 

supercomputer acquired by NASA’s Advanced Supercomputer Facility. Endeavor 

(http://www.nas.nasa.gov/hecc/resources/endeavour.html) is a large shared memory system (6 

TB of total memory) which should increase the performance of unsupervised clustering 

algorithm applied to large datasets (i.e., continental Landsat composites). Currently, any 

computational job requiring more than 252 GB will not run on the Pleiades supercomputer. 

Clustering techniques based on unsupervised algorithms are inherently difficult to parallelize and 

require large memory resources. We are in the process of testing the performance of 

unsupervised classifiers on continental Landsat composites with the large shared memory of 

Endeavor. 
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LP DAAC (web portal, data portal, web map) 

Dave Meyer, U. S. Geological Survey 

Stacie Doman Bennett, U. S. Geological Survey 

Web Master (web portal, data portal, web map) 

Justin Poehnelt, IT expert, NAU\USGS 

Jeff Peters, U. S. Geological Survey 

Google Earth Engine: (Python and Java scripts on Playfield);  

Justin Poehnelt, IT expert, NAU\USGS  

Jun Xiong, Post doc, NAU\USGS 

David Thau, Google  

IT Support 

Mr. Miguel Velasco, U. S. Geological Survey 

IT Unit of Astrogeology, Flagstaff, USGS 

 

14.0 Workshops and Meetings 

The fourth workshop of the GFSAD30 was held on June 24-26, 2014 at the USGS in Sioux 

Falls, SD. The fifth workshop will be held in Reston, VA during January 28-30, 2015. 


